Tecan Spark 多功能微孔板检测仪 简明操作手册

(本手册应结合现场培训使用)

	=
	ন্দ
_	
	•

1. 总体介绍	
1.1 仪器型号和操作软件	1
1.2 重要面板接口和按键	1
1.3 一般联机顺序	
1.4 常规注意事项	
2 SparkControl 操作软件实例	4
2.1 SparkControl 软件界面	4
2.2 有关板型选择的常识	5
2.3 终点法,动力学检测,光谱扫描和孔域多点扫描模式	5
3. 仪器测量参数解释	
3.1 光吸收:	
3.2 荧光:	10
3.3 时间分辨荧光与均相时间分辨荧光	
3.4 发光	12
3.5 Alpha(放大型发光靠近均相检测)	14
3.6 荧光偏振	15
3.7 其它	17
4. Magellan 分析软件部分	17
4.1 简介	17
4.2 Magellan 方法编辑:以终点定量实验为例	
5. Spark 机器附件	28
5.1 自动加样器	
5.2 Nanoquant 微量板	
5.3 Cellchip 和适配器	
5.4 气体控制(GCM),湿度盒,温度控制	34
5.5 自动开盖	
5.6 Spark-Stack 微孔板堆栈	
6. 常见问题(FAQ)	
6.1 我的 SparkControl 软件无法控制仪器该怎么办?	
6.2 为什么实验结果阴阳性对照的荧光信号没有区别?	
6.3 Spark 开展长时间动力学实验突然中断是什么原因?	40
6.4 Spark 能使用其他品牌的滤光片吗?	41

1. 总体介绍

1.1 仪器型号和操作软件

Spark 是 Tecan 公司一款新型高端的多功能微孔板检测平台(酶标仪),检测模块和其他附件根据用户需求自定义配置。

Tecan 提供两款独立的软件操控 Spark 酶标仪,分别是 SparkControl 和 SparkControl Magellan2.2。两者都可以独立控制机器,SparkControl 简单直 观;SparkControl magellan 是在 SparkControl 功能基础上,增加了数据分析 处理功能,同时 Magellan 标准版可安装中文版本,且 tracker 版本并符合 21 CFR PART 11 要求。

1.2 重要面板接口和按键

1.2.1 电源开关: Spark 机器有两个开关,一个是总电源开关,位于尾部电源线 插口上方的小凹槽,为下图1所示⑩位置;另一个是 0n/0ff(开/关)按钮,位于仪器正面,为下图2所示位置,可以轻松打开和关闭仪器。

1.2.2 连接线端口: Spark 机器采用 USB 线与电脑连接。机器端 USB 插口位于尾部,如图1的12号位置。

1.2.3 Spark 其他附件与主机接口详见下表

序号	对应背面视图位置	功能
1	2	温度传感器盖
2	11	USB 摄像头接口(明场成像)
3	13	进样器接口
4	15	二氧化碳连接(气体控制)
5	16	氮气连接(气体控制) 详见5.4.1
6	17	供液: 冷却液 (T-cool)
7	18	回流:冷却液(T-cool)
8	19	冷凝物出口 (T-cool) 详见 5.4.3

图 1 Spark 背面视图

1.2.4 机身启动: Onboard Start按钮直接从设备中启动首选的SparkControl 方法。这一按钮还可以用于停止测定,确认用户定义的用户干预操作,通过软件继续已经暂停的多点测定。如图2所示。

1.2.5 弹出滤光片控制按钮: Eject Filter按钮用于移出滤光片架。滤光片架会 在插入时自动进入。如图2所示。

1.2.6 缩回/弹出:使用 Retract/Eject 按钮可以将微孔板插入到设备中或从中 取出,无需激活软件。如图2所示。

图 2 Spark 机身正面控制按钮

1.3 一般联机顺序

1.3.1 开机顺序:

1.4 常规注意事项

a) 将微孔板放置在载板架上, A1 孔位于左上角, 如图:

- b) Spark 仪器处于待机状态时并不耗费光源及其他部件寿命,可以不关机使用。 但仍建议假期或长时间不用时,完全关闭仪器电源。
- c) 电源: 220V 交流电。电压不稳或经常断电地区,建议使用稳压保护装置或不间断电源。
- d) 精密仪器需要保持避光和干净的室内环境,维持一定的湿度(30%-80%),维持室内比较恒定的温度,以 20-22 ℃为最适宜。

2 SparkControl 操作软件实例

2.1 SparkControl 软件界面

整个界面主要分成左,中,右三块,最右栏主要是仪器功能模块(**这里显示了机** 器所具备的所有功能),中间是实验流程编辑界面,最右边是状态提示栏(提示 流程是否出错等)。

SparkControl 的使用为拖拽式的操作,一般测量步骤可概括为三步:

- a)选取实验使用的板型(下拉选取即可)。
- b)选取需要检测的样本孔(标蓝即为选中)。
- c) 双击或拖拽将要检测的项目(如: absorbance) 至微孔板图示下方。设置好 波长等参数,点击软件页眉栏开始键 Start,开始测量。

2.2 有关板型选择的常识

- a) 对于可见光吸收检测,使用全透明微孔板;紫外光吸收检测,使用UV全透明 微孔板;荧光强度荧光偏振,使用黑色不透明板,需要检测底读的用黑色底 透微孔板;化学发光和时间分辨荧光,使用白色不透明微孔板。
- b) 适用 1-1536 孔板。96 孔微孔板内每孔可检测100-300u1 溶液,最佳检测体积为200u1。
 384 孔微孔板内每孔可检测50-100u1 溶液,最佳检测体积为80u1。

1536 孔微孔板内每孔可检测10-20u1 溶液,最佳检测体积为10u1

c) 检测完的微孔板不要长期置于仪器中。检测完后就从仪器中取出,避免溶液 蒸发腐蚀或损坏仪器内部光路系统。如果有强腐蚀性或挥发性溶液,请带盖 测量。

2.3 终点法,动力学检测,光谱扫描和孔域多点扫描模式

以上四种模式为 Spark 的主要检测模式,下述图示中会详细解释上述概念。 2.3.1 SparkCcontrol 操作理念:一键控制,支持触屏设备(Tablet)。打开 Spark Control,点击"Method Editor - NEW",显示菜单页面,还可以 再切换至 Dashboard 界面。通过快速、拖拽式的方法编程,例如鼠标右键按住 Absorbance,将其拖拽至微孔板下方即可(或者鼠标双击 Absorbance 会自动落 入工作区下方)。

2.3.2 终点法检测:终点法检测使用较多,下图以 BCA 蛋白定量为例,编辑流程 非常简单。

4 出板

包括了最基本要素,板型,待测孔,测量参数(或动作),流程即可运行。 2.3.3 动力学检测流程:相比终点法,动力学多了上图示的动力学功能条,此功 能条包括了动力学总时间或者循环次数,还有动力学的时间间隔。

需要提醒的是,动力学测试的内容(如 absorbance)一定要包括在动力学 循环里面(即比动力学短),否则程序状态会报错,无法执行。

File Edit View Instrument Help	Start Rev Open Save Plate Out Ex Filter Em Filter >	One Spark Sele	ct component 🔻 Select app 🔹 🚺
Measurement P Plate Pla	Plate [GRE96ft] - Greiner 96 Flat Tr No lid 1 2 3 4 0	Smooth mode	ou ◉ 动力学 功能条
Condition Injector Move Plate Temperature Gas K Kinetic		20	002 (19)
Kinetic Loop	► D Absorbance Name Mea Label 1 492	surement wavelength	003 (1)

2.3.4 光谱扫描: 有光吸收扫描(absorbance scan), 荧光强度扫描 (Fluorescence Intensity Scan)和化学发光扫描(Luminescence Scan)三种。 光吸收和化学发光扫描一般用于确定物质溶液特异吸收峰或发光反应的出射光 最大波峰, 而荧光扫描用于确定物质的最佳激发和最佳发射波长。设置都比较简 单, 拖拽至编辑窗口, 设置好波长范围即可(其它参数设置同终点法测量)。如 下图:

光吸收扫描:光吸收采用高速光栅(HSM),此技术申请了美国专利,单孔全波长(200-1000nm)扫描包括数据处理小于 5s,业内速度最快。

荧光扫描:有激发扫描,发射扫描和 3D 扫描可选。参数设置时,特别需要注意 扫描波长范围与固定端波长需要有一定距离,否则会串光。

例如扫描已知的荧光素发射波长(485/535),我们设置如下:如激发和发射带宽为 20nm,我们设置激发端为 475nm(覆盖有效激发),发射端从 520nm 起,这样 520nm 与 475nm 间隔 45nm,完全排除激发光串光风险。

Measurement 💾 🕨 P	Plate Plate area B2-G11	001
P Plate Plate Part Of Plate Well	Fluorescence Intensity Scan Name Label 1	002 🔳
Detection Absorbance Absorbance Scan Fluorescence Intensity	Scan selection Emission Scan Mode Top O Bottom	
Fluorescence Intensity Scan Fluorescence Polarization	ixcitation wavelength [nm] Monochromator	
Luminescence Cell Confluence Cell Counting	Emission wavelength [nm] From 520 🔄 To 600 🔁 Bandwidth 20.0 ° Step size 81 measurements	e 1
Action Wait	Flashes 1	
User Intervention Shaking	Gain Manual T 100	
Condition Injector	Mirror AUTOMATIC	
Move Plate Temperature Gas	Z-Position [µm] Manual V 20000 🚭	
Kinetic	Settle time [ms] 0	
Kinetic Loop	Signal integration [µs] Lag time 0 🔄 Integration time 40 🔄	

孔域扫描:也叫孔域多点读取,一般用于读取分布不均匀的样本,如菌液和细胞 (特别是贴壁细胞,还要用底读)。其操作流程图示如下(以光吸收为例,需要 选中multiple reads per well 中的User defined,再设置Pattern, size, border。

	 Hide advanced settings 	
Flashes	1 🌩	
Settle time [ms]	50 🗢	
Multiple reads per well	Area scan 🔻	Size 100x100 🔻
Pathlength correction	Not defined	

3. 仪器测量参数解释

此部分将分为光吸收,荧光强度,时间分辨荧光,化学发光和荧光偏振 5 部 分来解释。

3.1 光吸收:

光吸收一般用于测量样本的光密度(OD 值),基于**朗伯比尔定律**,即可换算 出样本浓度。它使用简单,应用广泛,是实验室中使用频率最高的检测方法。 在软件中的主要参数设置如下图:(后面有逐个解释)

File Edit View Instrument Help	Start Image: Constraint of the start	ipp 🔻 🚺
Measurement	te Name Plate area B2-G11	001 (的
P Plate		
Plate Part Of Plate Well	D Absorbance	002 💼
Detection Absorbance	Messurement wavelength [nm] 450 🔄 🖌 Reference 630 🕞 Bandwidth 3.5	
Fluorescence Intensity	✓ Hide advanced settings	
Fluorescence Intensity Scan Fluorescence Polarization	Flashes 10	
TR Fluorescence Intensity Luminescence	Settle time [ms] 50 🚭	
Cell Confluence Cell Counting	Multiple reads per well Not defined	
A Action	Pathlength correction Not defined	

- a. Name Label 即为标签,如可设成 ELISA,也可使用默认。此功能在多标签测 量时作用会明显,增加了不同数据组的辨识度。
- b. 测量波长(Measurement wavelength):表示样本特异的吸收波长,如检测 波长使用 450nm。而参比波长一般为非特异吸收,常用 630nm 或 650nm。
- c. 闪光次数(Flash):测量某一孔时的闪光数,结果即为多次闪光测量的平均 值。所以,次数越多,结果越稳定,但测量时间会增加。如果扫描时需要设 置次数为1,否则会增加扫描时间。
- d. 稳定时间(Settle time):为微孔板移动到检测探头下,在正式测量开始前的停息时间。光吸收 OD 读数约稳定(重复性高),一般液体表面张力大,100ms 足够。96 孔及以上微孔板由于液体表面张力大,可以设置 0,48 孔及以下微 孔板可以设置 50 或 100ms。

Multiple reads per well	User defined 🔻	Pattern Circle (fill ▼ Size 15x15 ▼ Border Jum 500 �	
Pathlength correction	Not defined	Solder (an)	

 e. 多点读取(Multiple reads per well):选 User defined,代表检测时选取多 个点测量,将多点测量值的平均值作为结果,可以设置 patten, size, border 的测量参数。

Pathlength correction	Defined 🔻	Test wavelength [nm]		977 🔷
		Reference wavelength [nm]		900 🔶
		Correction factor	Manual 🔻	0.186 🗢

f. Pathlength correction (光程校准):将不同微孔中的 0D 值统一转换成光程为 1CM 时的 0D 值,这可排除因加样误差导致的 0D 值不一致性。其原理是利用了水在 977nm 处有特定吸收。但此功能在使用时有一些限制,比如<u>在颜</u>

<u>色偏红的液体,不均匀浑浊液体以及含甲醇等有机溶剂比例比较高的液体中</u> 不适合使用。(请注意!)

3.2 荧光:

Spark 荧光检测独创了融合光路,是真正的 Hybrid—结合滤光片和 QuadX 四光栅,在同一个实验中可以自由选择,实现光栅灵活性和滤光片灵敏性二者兼得,能够满足对灵活性和高灵敏度都有很高要求的实验用户。

Fluorescence Intensity			002
Name	Label 1		
Mode	Top O Bottom		
Huorophore	Other 💌		
Excitation wavelength [nm]	Monochromator 🔻	485 \$ Bandwidth 20	
Emission wavelength [nm]	Monochromator Filter Monochromator	535 C Bandwidth 20	

与光吸收相比较,荧光测量参数相对复杂一些。波长设置有激发和发射两端,除此还多了 Gain (增益调整)和 Z 轴 (高度)调整这 2 个核心参数。我们以下 图黑框中参数为例详细讲解。

Flashes	30 🗘	
Gain	Optimal 🔻	
Mirror	AUTOMATIC	
Z-Position [μm]	Manual	20000 🗢
Settle time [ms]	0	
Multiple reads per well	User defined 🔻	Type Circle (filled) ▼ Size 3x3 ▼ Border [µm] 500 €
Position [µm]	Manual	Gain Optimal Optimal
	Calculated from well	Mirror Manual Calculated from well

a)首先,Excitation和 emission,激发和发射波长设定。在滤光片光路中直接选定已配好的滤光片组即可,而在光栅光路中,波长可以灵活选择,但分为标准和增强两种。在标准光栅中,带宽固定为 20nm;在增强光栅中,带宽为 5-50nm 之间灵活可调。设定波长时需要唯一注意的是激发和发射不能有

串光重叠,选择一个荧光素,展示显示的波谱;波长选择过于靠近,软件提示"串光风险",如激发波长设为485(20nm),那么发射至少需要设在525nm (20nm),设定小于525nm 会造成串光背景很高。

- b) Flash number (闪光次数) 和 settle time (稳定时间) 与光吸收中的意义 类似。
- c) 顶读和底读(top/Bottom): 一般贴壁细胞荧光或很少液体量的样本我们选择底读, 其它我们均选择顶部读取信号。
- d) Z-position(Z 轴高度):此功能可调整检测探头高度来获取更好的信噪比。 Manual(手动)默认高度为 2cm,此处可手动调整(依据为实际使用的微孔板 高度,一般微孔板不带盖高度在 15000um)。当然也可以选择某一个有代表 性的样本作为高度选择依据,这就是 calculated from well 功能。 Same as 为参照前一个标记测量所使用的高度(多标记测量中)。
- e) Gain 值:增益,表示检测器 PMT 的电压。Gain 越大,信号值越大,但噪音 也会增加,一般我们希望 gain 值在 60-200 之间。软件中共有 4 个选项。 Manual(手动),一般用于样本强度比较熟悉的情况。Optimal(优化),自 动优化,机器会根据样本信号自动寻找合适的 gain 值。Calculated from well(从孔计算),可以指定某一个样本孔作为机器优化 gain 的参照。而 extended dynamic range(动态范围)一般则用于整板中样本浓度差异非常大 的情况。

f) Multiple reads per well(孔域扫描),此功能与光吸收中多点扫描类似。g) lag time(延时时间),在普通荧光检测中,这两个参数一般默认设置为0。

3.3 时间分辨荧光与均相时间分辨荧光

时间分辨荧光需要设定 lag time。它与普通荧光强度的区别是此探针荧 光寿命相对较长,此项一般设定为 100µs。整合时间(Integration time) 也需要调整。一般需要根据具体的试剂盒要求来设定。竞品使用滤光片光路 做 TRF,而 Spark 除了滤光片,光栅也可以做 TRF 实验;增强版光栅甚至可 以做 TR-FRET(HTRF)实验。下面,以 HTRF 实验(PE 试剂盒)为例,软件设 置融合光路测量参数:

此实验涉及两个荧光集团(供体和受体)间能量传递,为双波长检测, 激发波长为320nm,带宽25nm;供体的发射波长为620nm,带宽10nm;受体 的发射波长为665nm,带宽8nm; Gain选optimal,Z轴选calculated from well。

注意:实验原理请参考《Application guide Tecan MMR》手册第 28-29页,也可以咨询 Tecan 技术人员。

3.4 发光

a) Luminescence-Type"命令中的"Attenuation"项:使用或不使用灰度滤光

片,此功能有五个选项,分别为 none (无), Automatic (OD1, OD2, OD3) 三个 选项可选, automatic (自动)。分别表示不削减光强度,自动削减原光强 度 10 倍,100 倍,1000 倍。但即使有削减,最终呈现结果都会换算成无削 减的数值。当可能有样本光比较强时,请选择 automatic (检测时间稍长), 其它情况选 none。

D Luminescence			
Name Label	1		
Type Atten	uation	None	•
-		OD1 OD2	
Integration time [ms]	100	00 CD3 Auto	

Luminescence-Type"命令中的"Filter settings"项:设定检测波长

Name	Label 2						
Type Wavelength [nm]	Filter settings	530		Central wavelength	495	Bandwidth	70
	360		700				

- b) 整合时间(integration time):表示采集信号的时间,机器默认为1000ms, 满足大部分实验需求,但试剂盒说明书有特殊要求,可按试剂盒要求去设置。
- c) Settle time 和 name 类似其它检测模式,稳定时间增加数据稳定性, name 即标签。但化学实验整合时间较长,所以稳定时间设为0完全没问题。

Measurement	A Name Plate area B2.G11	001 (1)
P Plate Cuvette Plate Part Of Plate Well	V D Luminescence	002 (#)
Detection Absorbance Absorbance Scan Alpha Technology	Type Attenuation None Integration time [ms] 1000	
Fluorescence Intensity Fluorescence Intensity Scar Fluorescence Polarization TR Fluorescence Intensity	Settle time [ms] 0 [m]	
Luminescence Luminescence Multi Color Luminescence Scan	Output Counts/s	

d) 多色发光(luminescence Multi Color):此功能一般用于 BRET(发光共振

能量转移)和 Chroma-Glo 实验,其中 BRET 包括 BRET1/BRET2/BRET3 三种类型;用户也可自定义检测波长,最多可以设置 5 种检测波长。

Application	New	•	Add						
Color	Name	Wavelength [nm]		Central wavelength	Bandwidt	th	Integration time [ms]		
1.	Label 9		460	_	495	70	1000 🗘	Delete	
2.	Label 10		640	700	670	60	1000 🗘	Delete	
		360		700					

e) 发光扫描(Luminescnece Scan: Spark 化学发光独有的滤光片设计可实现 390-660nm 波长范围内扫描。

Luminescence Scan		002 🕲
Name	Label 1	=
Central wavelength [nm]	398 0	
	398 653	
	18 Measurements	
Integration time [ms]	1000 🗘	
	Show advanced settings	

注意: 多色发光 & 发光波长扫描是可选配置!

3.5 Alpha(放大型发光靠近均相检测)

Alpha 技术:此技术原理依赖于受体微珠与供体微珠的相互作用来获得信号。 Alpha 检测技术包括 AlphaScreen, AlphaLISA, AlphaPlex 的检测。

Alpha 模块主要包括增强型化学发光模块和连接非接触式红外温度传感器的激光模块。Spark 机器以 750mW 的 680nm 红激光为激发光源,红外温度传感器可使不同微孔温度均一化,保证此技术的准确性和灵敏度。如下图所示:

软件可控制 Alpha 模块, 鼠标拖拽 Alpha Technology 到工作区,点击 Application 有四种可选应用: AlphaScreen, AlphaLISA, AlphaPlex 和 new, 前三个是预定义, new 是用户自定义选择检测波长。

3.6 荧光偏振

🖾 Measurement 🛛 📮	Plate	Name	Plate area					001 (1)
P Plate		•	· B2-G11					
Cuvette								
Plate	Fluorescence Polariza	ation						002 🔳
Part Of Plate								
Well		Name Label 1						
Detection								
Absorbance	Fluc	rophore Other	•					
Absorbance Scan		6)					
Alpha Technology	Excitation wavelen	gth [nn] Monochromato	•		485 🗢	Bandwidth	20.0	
Fluorescence Intensity								
Fluorescence Intensity Scar	Emission wavelen	gth [nm] Monochromato	r v		535 🗢	Bandwidth	20.0	
Fluorescence Polarization								
TR Fluorescence Intensity	G	Factor Manual	T	1.000 🗢	Uncalibra	ated G-Factor	Reset	
Luminescence								
Luminescence Multi Color		Blank Not defined	•					
Luminescence Scan								
Cell Counting		Show advance	ed settings					
Cell Counting								
A Action								

荧光偏振(Fluorescence Polarization, FP)是建立在荧光强度检测基础上的,过程中机器会自动检测其水平通道和垂直通道的荧光强度,并计算出偏振值(mP)。Spark除了滤光片光路,光栅光路也可以检测全波段(300-850nm)FP,还可以扫描。下面着重解释其独有参数设置-空白对照和G因子。

$$FP = \frac{I_{\parallel} - G \times I_{\perp}}{I_{\parallel} + G \times I_{\perp}}$$

a) Blank(空白孔),因上面计算公式中水平和垂直的荧光强度其实是各自减去空白后的值,所以可见空白设置对荧光偏振计算非常重要。一定要设置 Plate layout,建议设置 3-5 个空白孔 BL,G-factor 校正因子 RF1 和 BF1(机器取平均),以获取稳定准确的空白信号。这点非常重要!见下图:

选中微孔板 B2-B7 双击 BL(图示黑色为空白)。同理,G因子自动校验需要的参比孔(小分子溶液,图示咖啡色)和空白对照(土黄色)双击 RF和 BF(其中G因子空白可设置成等同测量空白孔)。

b) G 因子,反应垂直或水平通道的响应系数,理想状态下水平和垂直通道对于 小分子荧光偏振的读数值应一致,但实际做不到。所以我们一般用小分子(旋 转比较快)来校验水平和垂直通道的测量差异。

G因子设定有手动和自动计算两个选项。手动设定值范围一般是 0.6-1.5 之间。

而自动 G 因子校验,我们需要准备小分子荧光溶液作为 G 因子参比孔。一般地,设定溶解于 0.01M/L 的 NAOH 溶液的 1nM 荧光素 mP 数为 20。(孔范围设置如同空白孔设定)。

- c) 说明, G 因子会影响偏振值计算结果, 但不会改变实验中整个样本梯度的偏振变化趋势。(G 因子不当, 会出现很多负值)
- d)一般,更换了实验探针(波长)或者滤光片组,那么G因子按理需要重新使用新荧光探针再校验一下。当然预实验中,完全可以默认G因子为1加快摸索,因为前面说过G因子不会改变样本绝对趋势,只是影响数值呈现。
- e)最后,影响偏振实验结果的因素有很多,温度,粘度等都有影响。更多细节 请咨询 tecan 技术人员。

3.7 其它

其它功能,如震板,等待,温度功能比较简单,同样可以拖拽到程序中使用, 这里不再说明。

4. Magellan 分析软件部分

4.1 简介

Magellan 和 SparkCcontrol 一样,都是控制 Spark 的软件,但 Magellan 多了分 析功能和符合相关法规的特征。

可以说, Magellan 的功能可简单理解为2个层面:

- 几乎包括了所有 SparkCcontrol 控制机器的性能。
- 数据分析处理,图像呈现,法规符合等功能。

因 Magellan 的功能特点很多,很难用几页纸说明完,所以此简明操作主要将解释基本和核心特点,Magellan 的细节功能会在实际操作中得到熟悉和掌握。

当 Magellan 成功连接 Spark 机器后,我们将看到其主界面,包括开始测量, 评估结果,创建 ID 列表和创建编辑方法主要选项,图示转下页:

ſ	•TECAN•
	Wizard List - SparkControl magellan V 2.2
	What do you want to do? Start measurement The Start Measurement wizard helps you to perform a measurement
	Evaluate results Vu can either use a method or obtain raw data
	Create/ eux a sample to list
	Create/edit a method
	Ext SparkControl magellan
	SPARKLONIROL magellan

软件首页下方 → 中包含很多机器的通用设置,温度计图标 → 可进行温度设置, 为进出板键, 三角箭头表示下一步。

开始测量(start measurement),即选择已编好的方法测量或直接开始测量。

评估结果(evaluate results), 查看或分析已得到的实验数据。

创建编辑 ID 列表,编辑样本的 ID 信息。(不常用,可先忽略)

编辑方法(creat/edit a method),编辑检测参数和数据分析方法。

注: 使用 Magellan, 可以通过 创建/编辑方法先建立一个方法, 然后再通过 start measurement 开始测量。当然也可以直接进行测量, 而不先布局板孔。

4.2 Magellan 方法编辑:以终点定量实验为例

使用 magellan 编辑实验方法, 基本分两大步:

第一步:编辑测量参数,下面图示会看到基本等同 SparkControl。(不再 详述)

第二部:样本布局,浓度设置以及分析方法。(**重点说明**)。 选择**创建/编辑方法**,点击下一步 ▶,选择**新建**,再点击下一步 ▶,

	•TECAN•
Create/Edit a Method	×
New Open	
Help Cancel Cancel Cancel	N D

出现与 SparkControl 类似的界面,如下所示

🔄 Measurement	P Plate	001 🛞
P Plate Plate Part Of Plate Well	[GEE96ft] - Greiner 98 Flat Tr▼ ▼ No lid ▼ No humidity cassette ▼ Smooth mode	
Detection Absorbance Scan Huorescence Intensity Fluorescence Intensity Scan Fluorescence Polarization TR Fluorescence Intensity Luminescence Cell Confluence Cell Confluence	1 2 3 4 5 6 7 8 9 10 10 A Image: Constraint of the state of t	
Action Wait Comment User Intervention Shaking Condition	H Absorbance	002 (1)
Injector Move Plate Temperature	Name Label 1	
Gas	Measurement wavelength (nm) 430 V	
Kinetic Kinetic Loop	Show advanced settings	
i Number of Plates	1	Back Next

点击右下角的 Next, ▶ 即进入必须掌握的 Magellan 第二层的布局和分析参数 设置。

这里可设置的参数很多,但是最基本的部分只有四步:**样本布局,浓度和稀** 释度设置,数据转换和标曲类型选择。

a) **样本布局**:即需要告诉软件,哪些是标准品,哪些是阴阳性或者空白等。设置时需要用到上图中标识符工具。

设置方法:选中需要设置的孔,然后双击标识(空白 BL,样本 SM,标准 ST,阴性 NC,阳性 PC 等)或点填充,这样各孔就被标识了。其中如有复孔,需要在标识符中设置一下复孔方向和复孔数(fix number)。如下图:

各孔样本被标识后,即完成了布局设置。最左一栏的数据转换和分析功 能随之出现。

- 的细节特征。 实验组,一块板上可以 有多组实验,使用不同 Well Assignm. 的标准曲线 Identifiers Exp. group: SM 1 * 默认标识符,可以 样本序号,表示第多少 ΒL ID-Num.-更改(建议默认) 个样本,顺序递增方向 ≠ 4 在微孔板上: 从上往下 PC. 61 🦳 Y NC Replicates LPC ≠ 4 HPC BF Fix number: 复孔方向和复孔数设置。图 示复复孔方向为从上往下, RF 1 孔数为1,其实表示无复孔。 🔘 All Def. identif. Delete Fill selection selection
- b) 标识符: 在进入下一步浓度和稀释度设置前,我们需要了解一下标识符设置的细节转征

再以布局好的图示进一步认识,

ST1_1	ST1_1	ST1_1	ST1_1	ST1_2	ST1_2	ST1_2	ST1_2	BL1	PC1
1/4	2/4	3/4	4/4	1/4	2/4	3/4	4/4	1/3	1/3
ST1_3	ST1_3	ST1_3	ST1_3	ST1_4	ST1_4	ST1_4	ST1_4	BL1	PC1
1/4	2/4	3/4	4/4	1/4	2/4	3/4	4/4	2/3	2/3
ST1_5	ST1_5	ST1_5	ST1_5	ST1_6	ST1_6	ST1_6	ST1_6	BL1	PC1
1/4	2/4	3/4	4/4	1/4	2/4	3/4	4/4	3/3	3/3
SM1_1	SM1_2	SM1_3	SM1_4	SM1_5	SM1_6	SM1_7	SM1_8	SM1_9	NC1
1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3

上图中,黑框框选的 ST1_2(3/4), ST 表示是标准品, 1_2 中表示实验组 1 中的第二个样本, 3/4 表示此孔是 4 个复孔中的第三个样。

c)标准品浓度和样本稀释度设置:

完成布局后,定量实验中定会有标准品的浓度设置和可能的样本稀释度设置。

设置方法,从最左边的参数设置栏,依次往下(方法布局的第二项),找到 浓度和稀释度设置(con.-,Di1.-,Ref…),点击,见下图:

Create/Edit a Method			
Undo Redo Paste 10% 100% Zoom			
Image: Select Identifier: Select Identifier: ST Image: Select Identifier: ST BL Image: Select Identifier: ST SElect Identifier:	0	1	2
Conc, Dil, Retvalues I STI_1 PC Image: Stright of the s	A	BL1 1/4 1	BL1 2/4 1
Add new transformation	B	ST1_1 1/4 0	ST1_1 2/4 0
Evaluate data Cutoff definition QC Validation	C	ST1_2 1/4 0	ST1_2 2/4 0
Data handling Oliver Constraints of the second seco	D	ST1_3 1/4 0	ST1_3 2/4 0
⊘ Automated data handling ⓐ a(n+1) = a(n) + 0 ⓐ a(n+1) = a(n) × 0 ⓑ a(n+1) × 0	E	ST1_4 1/4 0	ST1_4 2/4 0
Number format Apply Method notes	F	ST1_5 1/4 0	ST1_5 2/4 0

这里,我们可以设置标准的浓度和其它样本的稀释度,以标准和样本为例:

d) 数据转换:

最常见的数据转换是空白扣除,此功能 Magellan 软件可自动完成。其他数据转换有不同标签(2次测量)的检测数据相减或者相除。这里我们仅以空白扣除为例。

操作时,点击数据转换(Transformed data)中的 add new transformation(添加新的转换),并**添加转换名称**,如果板布局上有空白(BL),软件会自动提醒 是否需要扣除空白,

点击 yes(是),所有孔出现公式 X-BL1

	Input data:	Raw data					~			
输入数据	fx	x-BL1								
			0	1	2	3	4	5	6	7
			A							
			B		ST1_1 1/4 x-BL1	ST1_1 2/4 x-BL1	ST1_1 3/4 x-BL1	ST1_1 4/4 x-BL1	ST1_2 1/4 x-BL1	ST1_2 2/4 x-BL1
			C		ST1_3 1/4 x-BL1	ST1_3 2/4 x-BL1	ST1_3 3/4 x-BL1	ST1_3 4/4 x-BL1	ST1_4 1/4 x-BL1	ST1_4 2/4 x-BL1
			D		ST1_5 1/4 x-BL1	ST1_5 2/4 x-BL1	ST1_5 3/4 x-BL1	ST1_5 4/4 x-BL1	ST1_6 1/4 x-BL1	ST1_6 2/4 x-BL1
			E		SM1_1 1/3 x-BL1	SM1_2 1/3 x-BL1	SM1_3 1/3 x-BL1	SM1_4 1/3 x-BL1	SM1_5 1/3 x-BL1	SM1_6 1/3 x-BL1
			F		SM1_1 2/3 x-BL1	SM1_2 2/3 x-BL1	SM1_3 2/3 x-BL1	SM1_4 2/3 x-BL1	SM1_5 2/3 x-BL1	SM1_6 2/3 x-BL1
				COMPONENT STATE	STREET, STREET	STREET, STREET	STREET, STREET	and the second se	STREET, STREET	STREET, STREET

很重要的是,公式 x-BL1 中, x 表示当前孔的输入数据(此例中为当前孔的

原始测量数据)。转换后,可选数据类型中会出现刚刚转换的空白扣除,默认 名称 Blank reduction。

初次使用,如有其它复杂的数据转换可咨询 tecan 技术人员。

e)标准曲线类型:

在 Create/Edit method(编辑方法)功能栏的 Concentration(浓度)里点击 Standard curve(标准曲线),即进入标准曲线设置界面。

① 选择用于标曲的输入数据(原始测量数据或转换的数据)。

Standard curve		
	Data Analysis type Intercepts Avis Graph	
	Input data: Raw data	
	Standards from Layout	
	Standards from ext. file: Select	
	O Standards from experimental group:	
	 No Standard curve graph 	
	Additional concentrations	

此例为板布局中带有标曲(常见)。上图中,软件还提供选择外部标曲文件 作标曲分析或使用其它实验组标曲做分析。(不常用)

② 择标准曲线的类型(线性,非线性等)。

点击标曲设置窗口的 analysis type(分析类型),进入标曲类型设置。这里可以选择将要进行拟合的标曲数据类型,是线性,还是非线性。常用的标曲类型 有线性回归,多项式,四参数分析等。

除此,还可以选择是否对标曲的 X,Y 轴取 LOG。(下图上方黑色窗口)。

窗口最下方(黑色框)还提供标曲是否过零点(include0,0)和是否需要延伸标曲线段功能(extrapolation)。

Standard curve	Data Analysis type Intercepts Axis Graph	
	Analysis Type	
	Point to point Data scaling: Cubic spline Akima	
	Polynomial Pour parameters Four parameters Four parameters Five parameters LogtLog	
	Extrapolation factor: 1	

注意:延伸标曲获得的最大或最小值供参考,软件会有特殊记号(#)。

以上两点为标曲中最重要的,其它细节功能这里不再细述。

f) 数据导出:

Magellan 测量后生成数据格式是.wsp 文件,如需将软件已有数据导出到 excel,需要在方法编辑里设置哪些数据需要导出,以何种格式呈现。

点击数据处理(data handling)中的数据导出(data export),进入设置 界面:

将需要导出的数据从左边可选栏拖拽到选择栏,再点击黑色框选项,设置导 出数据格式,一般勾选上时间,测量参数等。

	Baw data	
	Their data	
Raw data - Mean		Down
Raw data - Standard deviation		
Raw data - Variation coefficient		
🕮 🕰 Transformed data		
Sample IDs		
	->	
Sample ID 2	6	
Sample ID 3		
I Pipetting status		

Available data:	Se	ected data:	
nstrument data	R	aw data	Up Down
Direction Horizontal Vertical Result Matrix (nested) Matrix (separated) Matrix (XFluor style) Table (well data in rows) Table (well data in columns) Insert data names	Add data Date./time of measurement Method filename Method pathname Workspace filename Filter wavelength value(s) User prompts Current user name Measurement parameters Multiple plate informations	OK Cancel Help	
Add kinetic time stamps Add temperatures Remove empty lines	Validation results	Set as default Restore default	

g) 数据自动保存:

最后一个常用的 magellan 功能是自动数据保存,可防止误操作导致数据未保存等意外。

点击 automated data handling(自动数据处理),进入下面界面,勾选保存 工作区 (Save workspace)。

Automatic	
load sample ID list	More
save workspace	More
export to ASCII file	
export to ASTM file (LIS)	More
export to Sample Tracking	
export to Excel	
print	
view results after measurement	More

再点击 more(更多),还可设置带时间的个性化自动保存名称。结果保存路径 也可以设置自己常用的文件夹。

Date	(DDMMYYYY) + Counter	ОК
ODate	(YYYYMMDD) + Counter	Cancel
O Total	counter	Help
O Use a	vailable barcode	
Prefix:		
Path:	C:\Users\Public\Documents\Tecan\SparkControl	Set as default
Example:	27022020-001	Restore defaut

至此,方法设置的常用内容基本完成,可以点击下一步,保存编辑好的方法了。如下图所示:

C. (Users	Public\Documents\Tecan\Sp	1\SparkControl magellan\mth v				
K	 B LopFle ∧ Pas Pas Pas Pas Pas Pas Pas Pas Sorta Spark(Spark(Spark(V / wave V / wave V / wave 	Name CHTRF-PQ⁢ Knetic lat Chrotic quartification multi protein quartification Quot HR DNA Quot HR DNA Quot HR DNA Quot Terd Terd Chrotic quartification Quot HR DNA Quot Terd Chrotic quartification Quot HR DNA Quot Terd Chrotic quartification Quot HR DNA Quot Terd Terd Chrotic quartification Chrotic quartification	Remarks multiplate use a1-20 dilution for standards	A and set		
Filename: Method2	mth					
File remarks:				Ŷ		
Organize favorites	-		Method password:			
Organize favorites Help Cancel		🗌 Run this n	Method password:			

以后,就可以使用<u>开始测量(start measurement)</u>调用编辑好的方法开始 实验检测了。

以上4.1和4.2两节为magellan终点定量方法的简明内容,包括了Magellan的基本知识点。

如需使用 magellan 更多功能,请电询 tecan 技术人员或参照说明书。

5. Spark 机器附件

- 5.1 自动加样器
- 5.1.1 外观和示意图

双自动加样器外观如上图,双泵的液体通过一个注射载架在机器的顶部插入 到酶标仪中。其管路图如下:

5.1.2 注射器的使用 (dispense 和 injection 区别):

在使用注射器实验前,需要将管路灌注(prime)润洗(此时加样头需要从机器里拔出,放在 service position(图 5.1.1),完成灌注,再将针头插入机器中,编辑流程使用加样器。

软件中 dispense 和 injection 设置区别需要注意:都是加液,但 Injection 是孔模式, Dispense 是板模式。具体说, injection (注射)流程中, 在板孔示 意图下面必须加 well (板孔)功能条, 软件才可执行。其意思为, 往某一孔中 注射液体后, 机器必须执行完此孔中剩下的其它操作(如摇动, 测量), 才会移 动到下一孔加样。而 dispense (分液),可直接放在板孔示意图下方执行, 其 意思为, 给所有选定的孔分好液体后, 才会执行剩余的操作, 如摇动, 测量等。

Injection 一般用于加完样后反应非常快的检测,是逐孔模式,而 dispense 则用于反应缓慢而稳定的检测,是整板模式。

关于 Injection (前) 和 Dispense (后) 的流程示意图分别如下:

🛛 Measurement 🖉 🕨	P Plate Nat	ne	Plate area A1-H12		001 🕲	
P Plate Plate Part Of Plate Well	Vell					Injection 结
Detection Absorbance	A Injector				003 🗊	合 well 使用
Fluorescence Intensity Fluorescence Intensity Scan	► 🗹 Injector A	Volume 100	Speed / Refill speed 100 / 100			
TR Fluorescence Intensity Luminescence	Injector B	Volume 100	I Speed / Refill speed 100 / 100			
Cell Counting	Injector C	Volume 1 100	Speed / Refill speed 100 / 100			
Action Wait Comment	► Refill mode	Refill mode Standard	Refill volume			
User Intervention Shaking Condition	► D Luminescence	Name Label 1	Attenuation None	Integration time 1000	004	
Move Plate Temperature Gas						

29

Volume 100 Volume 100	Speed / Refil speed 100 / 100 Seed / Refil speed		Dispense 独立使用
Volume 100 Volume 100	Speed / Refill speed 100 / 100 Speed / Refill speed		Dispense 独立使用
I Volume 100 I Volume 100	Speed / Refill speed 100 / 100 Speed / Refill speed		独立使用
Volume 100	Speed / Refill speed		
	1007 100		
Volume 100	Speed / Refill speed 100 / 100		
Refill mode Standard	Refill volume		
Name Label 1	Attenuation	Integration time 003 (th)	
	Refill mode Standard Name Label 1	Refill mode Refill volume Standard Injector A 200 Name Attenuation Label 1 None	Refill mode Refill volume Injector A 200 Name Label 1 Attenuation None Integration time 1000 003 (®)

此外,因 Dispense 可不结合其它检测动作独立使用,所以 Dispense 使加样器可当分液器使用,且其在加小体积样本(如 5-10ul)时速度和精度都有很大优势(相比手工)。

5.1.2 使用加样器维护注意事项:

在 SparkControl 软件的 setting 中,有 Injectors 维护事项功能框,共3个选项。

X Injector					– – ×
Prime	Backflush	Rinse			
Injector	Volume [µl]	Sp	eed [µl/s]	Refill speed [µl/s]	
✓ A		200	300	300	Refill speed equal to prime speed
В		200	100	100	Refill speed equal to prime speed
C C		200	100	100	Refill speed equal to prime speed
					• Start prime
					Save as Default Close

Prime:使用加样器前必需要完成的操作,当液体完全灌注整个管路才能进行实验。 Backflush:实验结束后点选此框,代表回流试剂。

Rinse:最后一步清洗管路,使用去离子水彻底清洗管路并倾倒废液杯。

注意:此功能框中的所有动作需要将加样针从机器利拔出来, 插在 service position 操作。

5.2 Nanoquant 微量板

5.2.1 微量板使用简介

Nanoquant 微量板可用于微量样本的核酸定量,核酸标记效率和蛋白定量

(如 IgG 等),标准加样体积只需要 2 微升。在 SparkControl 软件中已预设了标准的 dsDNA, ssDNA 和 RNA 的检测方法,非常便捷,但特殊蛋白定量需要查询摩尔吸光系数,才能计算。

在 SparkControl 软件中,点击右上角的 select app 选择 quantify nucleic acid(核酸定量)或者 Dashboard 选择 Nucleic Acid Quantification,即进入核酸定量界面:

整个操作非常简单,大致分两步:选定样本类型后,首先做空白调零(空白一般为样本 buffer,如:水),然后用擦镜纸或无尘吸水纸擦掉 buffer,加上 2ul 测试样本,点击右下角的 start 测量,浓度,纯度及波普扫描图结果软件会自动显示。

操作中,扣除空白一般选择 individual blanking 选项,样本孔的空白扣除 计算是各自孔的样本 OD-各自孔空白 OD,若选 average blanking 选项,样本的 空白扣除为:各自孔的样本 OD-所有空白孔的平均 OD。选择 individual blanking, 软件会计算空白孔的 CV,如 CV 太大(板子没清洗干净),机器无法继续检测。

此外,还有样本类型选项,可从右下角的 samples 选择将要测试的样本类型,如: dsDNA, ssDNA, ssRNA 等,不同样本类型,其摩尔吸光系数不同。

5.2.2 Nanoquant 板使用注意事项

Tecan Nanoquant 板为专利产品,采用石英加样点镶嵌于金属板身中,无需 光程校准。如下图所示:

注意:样品直接加到样品孔,使用擦镜纸擦去孔内残留样品。如未及时清洗,加样点上有固体物沉积,建议使用浸泡加超声清洗的方式,但注意上下盖 铰链的地方不能浸入水中。

5.3 Cellchip 和适配器

5.3.1 细胞计数

Spark 是带细胞计数和活性检测的多功能酶标仪。软件可以设置复孔,以及 每个样品多至8幅照片以增强对低密度细胞样品进行准确计数。在SparkControl 软件编辑页面点击右上角的 select app 选择 Cell Counting 或在 DashBoard 上选择"Cell Counting",可对细胞无标记计数,如在 Chamber A 和 B 各使用 10uL 细胞悬液,设定为复孔,使用多至 8 幅照片的计数模式。实验结束软件自动生成 PDF 报告。

rs	Measurement paran	Cell counting	Method name
	Selected chambers A1	CellCounting_20141111-7	Results name
	E	11.11.2014 12:13:33	Date
B1 [8-30 μm]	A1 [8-30 µm]	Chambers	
9,27*105	1,17*106	onc. [cells/ml]	Cell co
204	258	Cells counted	
16,31	15,67	cell size [µm]	Average
5,52	5,20	Min cell size	
28,08	30,36	Max cell size	

5.3.2 细胞活性

使用 Trypan Blue 染色后观察细胞死活,软件自动标识活细胞(绿色圈)和 死细胞(红色圈),与人工计数相比,速度和准确度提高数十倍。Live viewer 相当于明场显微镜,观察细胞可放大4倍。如下图所示:

5.4 气体控制(GCM),湿度盒,温度控制

5.4.1 气体控制

Spark 的气体控制模块具有培养箱的功能,可准确控制氧气和二氧化碳气体浓度,适合活细胞和微生物培养。此模块可以整合到 SparkControl 软件中,与其他检测功能与动力学循环整合。软件可以设置氧气和二氧化碳的浓度,带接头的气体管道与仪器背部的接口相连,管道的另一端外接气体钢瓶,详见下图:

Gas								002
	Control On	1	•					
Gas	modus CO	2 and O2	•	CO2 [%]	5 🗘	O2 [%]	10 🗘	
		Gas detector "Off" or Gas control "Off" on	n completion completion					
	V	Vait for gas						
Range (02 [%]	Minimum	4,5 🗘	Maximum	5,5 🗘			
Range	O2 [%]	Minimum	9,5 🗘	Maximum	10,5 🗘			

注意:如果调控氧气,是通入氮气来调节所需氧气的浓度!!!

5.4.2 湿度盒

Tecan 独特的湿度控制模块(两种规格湿度盒, large/small),适用任何品牌/型号的微孔板(不再局限于 Nunc Edge plate)。湿度控制能解决实验中的溶液挥发导致的微孔板边缘效应,适合长时间尤其是动力学实验。湿度盒见下图:

5.4.3 温度控制

a)加热模块: Spark 全新的温度模块,提供更高的温度准确性和稳定性,可以通过 Spark Control 软件中的温度选项设置温度。检测腔体内部温控范围 18 度+室温——42 度。温度设置如下:

b) 冷却系统 (Te-cool): Spark机器的冷却系统可以将温度控制在18°C至 环境温度的范围内。冷却系统包括两个主要组件:外部冷却设备和集成冷却模块。 两个组件构成一个封闭的循环系统。液体冷却设备是一个外部装置,可以将冷却 后的液体泵入到集成冷却模块中,以给空气降温,被加热的液体返回外部液体冷 却设备被再次冷却。仪器背部有连接冷却系统的接口,将外部液体冷却设备的供 液冷却剂出口 2 (OUTLET) 与集成冷却模块背面的设备供液 3 (SUPPLY)端口连 接。

将外部液体冷却设备的供液冷却剂入口 1(INLET)与冷却模块背面的设备 回流 4(RETURN)端口连接。

将冷凝管连接到设备背面(集成冷却模块)的冷凝物出口 5(CONDENSATE OUTLET)。将冷凝物收集器放在管道的末端。如下图

冷却控制软件设置:环境冷却模块可以将环境温度设定为设备的目标温度。可以通过Dashboard或Method Editor中的Temperature Control窗口执行。

5.5 自动开盖

1

在活细胞和微生物长时间培养中, 微孔板需要带盖孵育或检测从而防止样品 挥发和污染。实验中注射试剂可通过自动开盖功能由仪器完成, 实现无人值守。 仪器内部有磁铁, 板盖上黏贴一个磁性贴片, 此功能通过磁铁的吸引力实现自动 开盖。软件设置 Removable lid, 如下图:

🔻 P Plate			
Manufacturer 🔹	Tecan 🔻	[TEC96fw] - Tecan 96 Flat W 🔻	T
Removable lid 🔻	No humidity cassette		Smooth mode

5.6 Spark-Stack 微孔板堆栈

Spark-Stack 是一款集成微孔板堆栈模块,该模块设计用于自动加载,卸载和重新堆栈微孔板,每次最多可以实现 50 个无盖微孔板的无人值守自动操作。 当 Spark-Stack 上安装了微孔板塔时,只有机身启动(Onboard-Start)按钮 ①上的停止功能仍然可以使用,所有其他机身控制按钮都处于禁用状态。当前操作完成后,在堆栈运行过程中按下 ②按钮将停止堆栈运行。堆栈如下图所示:

启动堆栈运行:从 Method Editor 中启动,即从工具栏中 Instrument 选择

Stacker 并单击 Start Stacker tile (启动堆栈块)。必须在开始堆栈运行前清 空 Spark-Stack 的输出塔。软件操作如下图所示:

注意: 插入输入塔和输出塔时, Method Editor 中包括启用的 Start Stacker 按钮和禁用的 Start 按钮。取出输入塔和输出塔,从而在没有堆栈的情况下运行。

6. 常见问题(FAQ)

6.1 我的 SparkControl 软件无法控制仪器该怎么办?

答:遇到这样问题首先查看软件页面左下角连接状态,若软件和仪器连接成功 (Fully operational),会显示10个数字的仪器序列号SN(每台仪器都有专属的 序列号),如下图所示:

如果软件和仪器未连接, 左下角不显示序列号, 可从以下几个方面排查:

a)检查电脑和仪器数据线是否连接完好。

b) 点击"我的电脑"-"属性"-"设备管理器",查看是否有"tecan controlled device",以及此device驱动是否正确。如果有设备显示有"!", 请重装驱动或禁用驱动数字签名,或联系tecan400热线或工程师。

c)如驱动完好,不能连接,请重启设备和电脑,再连接。

d) 请进入"控制面板", 删除tecan相关应用程序, 重新安装操控软件 "SparkControl"或"SparkMagellan"。

e)如属操作系统问题,请重装正版操作系统。建议安装正版WIN7/10系统。

6.2 为什么实验结果阴阳性对照的荧光信号没有区别?

答:荧光实验有时出现阴阳对照的设置及实验处理都没有问题,但检测出信号值几乎一样,另外整板其它孔信号也几乎一致。出现这个现象的原因主要是由于

ex/em 波长设置导致的,激发和发射光之间的距离较小,造成光谱重叠 (crosstalk)。也有其他原因,如背景干扰。

如果文献报道激发发射波长为488/519,您应该再注意一下带宽,如果带宽太大(20nm),会导致488/519设置发生串光(即发射端直接捕获到激发光源的光信号)。解决办法:依据 Kasha's rule 卡莎法则和波长带宽原理建议把激发(excitation)和发射(emission)波长分别向左和向右移动一些,如480/525就可以解决这个问题了。

6.3 Spark 开展长时间动力学实验突然中断是什么原因?

答: 很多长时间动力学检测超过 24 小时或更长,但在检测过程中,因间隔太长 (30min),酶标连接可能中断,导致数据丢失。主要原因(如果操作系统是正版) 一般是在计算机电源管理。

解决办法:打开"设备管理器",设置 USB 电源"不允许关闭"。或打开"控制 面板",设置电脑电源"从不进入睡眠"。如下图所示

General	Driver D	etails Events	Resource	s Power Managemer	nt
s	Intel(R) U	SB 3.0 eXtensi	ible Host Con	troller - 1.0 (Microsoft)	Lon-Archite
Allo	w the compu	uter to turn off t	his device to	save power	
Allo	w this device	e to wake the (computer		
C	hange settings	for the plan: Bala	nced		
C	hange settings	s for the plan: Bala d display settings that y	nced ou want your compu	ter to use.	
C	Change settings	s for the plan: Bala d display settings that yo	nced ou want your compu On battery	ter to use.	
C	hange settings hoose the sleep and Turn off the disp	s for the plan: Bala d display settings that yo iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	nced ou want your comput On battery	ter to use. Plugged in Never ~	
	Change settings hoose the sleep and Turn off the disp Put the compute	s for the plan: Bala d display settings that yo alay: Never er to sleep: Never	nced ou want your comput On battery	ter to use. Plugged in Never ~ Never ~	
C C C M M M M M M M M M M M M M M M M M	Change settings hoose the sleep and Image: Turn off the disp Put the compute Adjust plan brig	s for the plan: Bala d display settings that yr lay: Never er to sleep: Never htness:	nced ou want your comput On battery	ter to use. Plugged in Never Never	
	hange settings hoose the sleep and Turn off the disp Put the compute Adjust plan brig	s for the plan: Bala d display settings that yo lay: Never er to sleep: Never htness: •	nced ou want your comput On battery	ter to use. Plugged in Never Never	
	Change settings hoose the sleep and Turn off the disp Put the compute Adjust plan brigit hange advanced potential	s for the plan: Bala d display settings that yu olay: Never er to sleep: Never htness: O	nced ou want your comput On battery	ter to use. Plugged in Never Never	

6.4 Spark 能使用其他品牌的滤光片吗?

答: Tecan 不限制用户自主选择滤光片。只要滤光片大小合适,质量可靠,完全可以 Spark 机器上使用,其滤光片直径约为 12.5mm。滤光片更换请参考说明书(搜索 fluorescence intensity)章节或咨询 tecan 工程师。

Spark 激发和发射滤光片架分别独立,滤光片可以自由组合。安装滤光片时, 只需要按下靠近滤光片槽的按钮,插入滤光片,释放按钮,将滤光片固定到槽内 即可。下图左为滤光片,黄色箭头代表光的入射方向,右为独立的激发和发射6 位滤光片架,黑色箭头是按钮:

更换滤光片后,还需要重新定义更换的滤光片,内置芯片可记录波长设定。 在 SparkControl 软件的 Instrument 菜单中,点击 filter,进入下图界面:

Tecan SPARKCONTROL Deshboard		and Real			
			_		1.00
Filter slide description			Position 1	Excitation 485 (20)	
SIM_FILTER_EX		_	2	500 (100)	
			3	600 (30)	
Position	4 5 6	~	4	340 (35)	
	$) \cap \cap \cap <$	itation	5	320 (20)	
		Exc	6	700 (20)	
Position	4 3 6 Grier	_	Bandwidt	b	V X OK Carce
Position	wavelength [hm]		Danawiai	.[]	
✓ 1		485			20
Description					
Fluorescin					
Flash counter					
				25	508235